BINOMIAL - COEFFICIENT MULTIPLES OF IRRATIONALSTerrence

نویسندگان

  • Terrence M. Adams
  • Karl E. Petersen
چکیده

Denote by x a random innnite path in the graph of Pascal's triangle (left and right turns are selected independently with xed probabilities) and by d n (x) the binomial coeecient at the n'th level along the path x. Then for a dense G set of in the unit interval, fd n (x)g is almost surely dense but not uniformly distributed modulo 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binomial-coefficient Multiples of Irrationals

Denote by x a random infinite path in the graph of Pascal’s triangle (left and right turns are selected independently with fixed probabilities) and by dn(x) the binomial coefficient at the n’th level along the path x. Then for a dense Gδ set of θ in the unit interval, {dn(x)θ} is almost surely dense but not uniformly distributed modulo 1.

متن کامل

Comparison of five introduced confidence intervals for the binomial proportion

So far many confidence intervals were introduced for the binomial proportion. In this paper, our purpose is comparing five well known based on their exact confidence coefficient and average coverage probability.

متن کامل

The Negative q-Binomial

Interpretations for the q-binomial coefficient evaluated at −q are discussed. A (q, t)-version is established, including an instance of a cyclic sieving phenomenon involving unitary spaces. 1. The q-binomial The q-binomial coefficient is defined for integers k and n, with 0 ≤ k ≤ n, and an indeterminate q by

متن کامل

Combinatorial Proofs of Some Moriarty-type Binomial Coefficient Identities

In this note, we present combinatorial proofs of some Moriarty-type binomial coefficient identities using linear and circular domino arrangements.

متن کامل

Combinatorial proofs of a kind of binomial and q-binomial coefficient identities

We give combinatorial proofs of some binomial and q-binomial identities in the literature, such as ∞ ∑ k=−∞ (−1)kq(9k2+3k)/2 [ 2n n + 3k ] = (1 + q) n−1 ∏ k=1 (1 + q + q) (n ≥ 1),

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009